Doğalgaz Dergisi 237. Sayı |Enerji ve Çevre 180. Sayı (Mart 2023)

37 DOĞALGAZ VE ENERJİ • Mart / 2023 MAKALE [51] Palma V, Ruocco C, Martino M, Barba D, Meloni E. 14. General catalyst-related issues. In: Current trends and future developments on (bio-) membranes. Italy: Elsevier Inc; 2020.p. 303e24. https://doi.org/10.1016/B978-0-12- 816778-6.00014-X. [52] Mebrahtu C, Krebs F, Abate SVS, Centi G, Palkovits R. Chapter 5: CO2 methanation: principles and challenges. In: Albonetti S, Perathoner S, Quadrelli EA, editors. Studies in surface science and catalysis. 1st ed. Elsevier; 2019.p. 85e103. [53] Peters R. Fuel processing for utilization in fuel cells. In:Stolten D, Emonts B, editors. Hydrogen science and engineering: materials, processes, systems and technology.1st ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA;2016. p. 173e216. [54] Palma V, Martino M, Pisano D, Ciambelli P. Catalytic activities of bimetallic catalysts for low-temperature water gas shift reaction. Chem Eng Transact 2016;52:481e6. https://doi:10.3303/CET1652081. [55] Mokheimer E, Hussain MI, Ahmed S,Habib MA, Al-Qutub A.On the modeling of steam methane reforming. J Energy ResourTechnol 2014;137(1):012001. https:// doi:10.1115/1.4027962. [56] Song C. Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration. Appl Energy 2015;154(15):392e401. [57] Kanellopoulos N. In: Kanellopoulos N, editor. Small-scale gas to liquid fuel synthesis. 1st ed. Boca Raton: CRC Press; 2015. [58] Aliabadi HZ. Thermodynamic modeling of the high temperature shift converter reactor using minimization of Gibbs free energy. Int J Civ Mech Eng 2009;3(1):45e9. [59] Haydar J. Chemical process design and simulation, aspen plus and aspen HYSYS applications. 1st ed. Hoboken: JohnWiley& Sons, Inc; 2019, ISBN 9781119089117. [60] L. Aspen HYSYS simulation of CO2 removal by amine absorption from a gas based power plant. In: SIMS2007 conference; 2007. [61] Tobiesen AF, Svendsen FH, Hof AK. Desorber energy consumption amine based absorption plants. Int J Green Energy 2005;2(2):201e15. https://doi.org/10.101081/GE- 200058951. [62] Songolzadeh M, Soleimani M, Ravanchi TM, Songolzadeh R. Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Hindawi Publishing Corporation, The Scientific World Journal 2014:1e34. https://doi. org/10.1155/2014/828131. [63] Huertas IJ, Gomez DM, Giraldo N, Garzon J. CO 2 absorbing capacity of MEA. J Chem 2015;7. https://doi. org/10.1155/2015/965015. metal catalysts. J Catal 2001;197(2):229e31. https://doi. org/10.1006/jcat.2000.3087. [38] Vanden Bussche KM, Froment GF. A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 1996;161:1e10. [39] Leonzio G. Methanol synthesis: optimal solution for a better efficiency of the process. Processes 2018;6(3):20. https:// doi.org/10.3390/pr6030020. [40] Elias AR. Estimating the size of the levantine east mediteranean hydrocarbon basin. LCPS - Policy papers 2016:15e36. https://doi.org/10.5040/9781788318518. ch-001. [41] The World Bank. https://data.worldbank.org/country/ lebanon. [Accessed 23 November 2019]. [43] Speight JG. Handbook of industrial hydrocarbon processes. In: Speight JG, editor. Boston: Gulf Professional Publishing isan imprint of Elsevier; 2011. [44] Dybkjær I, Christensen TS. Syngas for large scale conversion of natural gas to liquid fuels. Stud Surf Sci Catal2001;136:435e40. https://doi:10.1016/S0167- 2991(01)80342-6. [45] Cherbanski R, Molga E. Sorption-enhanced steam methane reforming (SE-SMR) e a review: rector types, catalyst andsorbent characterization, process modelling. Chem Process Eng 2018;39(4):427e48. https:// doi:10.24425/122961. [46] Palma V, Ricca A, Ciambelli P. Fuel cell feed system based on H2 production by a compact multi-fuel catalytic ATR reactor.Int J Hydrogen Energy 2013;38:406e16. https:// doi.org/10.1016/j.ijhydene.2012.09.124. [47] Index Mundi. Lebanon crude oil consumption by year. 2019. https://www.indexmundi.com/energy/? country¼lb&product¼oil&graph¼consumption. [Accessed 13 November 2019]. [48] Olateju II, Gibson-Dick C, Egede SCO, Giwa A. Process development for hydrogen production via water-gas shift reaction using aspen HYSYS. Int J Eng Res Afr 2017;30:144e53 .https://doi.org/10.4028/www.scientific. net/JERA.30.144. [49] National outline plan NOP 37/H e environmental impact survey chapters 3 e 5 e marine environment. Miga website;2013. https://www.miga.org/sites/default/ files/archive/Documents/SPGDisclosures/Leviathan%20 Disclosure/NOP%20Nov12%20Chap3-4-5.pdf. [50] Vozniuk O, Tanchoux N, Millet JM, Albonetti S, Di Renzo F, Cavani F. Chapter 14: spinel mixed oxides for chemical- loop reforming: from solid state to potential application. In: Albonetti S, Perathoner S, Quadrelli EA, editors. Horizons in sustainable industrial chemistry and catalysis. Elsevier; 2019. p. 281e302. https://doi.org/10.1016/B978- 0-444-64127-4.00014-8

RkJQdWJsaXNoZXIy MTcyMTY=